7,368 research outputs found

    Molecular and phenotypic description of Coccidioides Posadasii sp nov., previously recognized as the non-California population of Coccidioides immitis

    No full text
    Coccidioides posadasii sp. nov., formerly known as non-California (non-CA) Coccidioides immitis, is described. Phylogenetic analyses using single nucleotide polymorphisms, genes, and microsatellites show that C. posadasii represents a divergent, genetically recombining monophyletic clade. Coccidioides posadasii can be distinguished from C. immitis by numerous DNA polymorphisms, and we show how either of two microsatellite loci may be used as diagnostic markers for this species. Growth experiments show that C. posadasii has significantly slower growth rates on high-salt media when compared with C. immitis, suggesting that other phenotypic characters may exist.Published versio

    A new method for spike extraction using velocity selective recording demonstrated with physiological ENG in Rat

    Get PDF
    BACKGROUND: This paper describes a series of experiments designed to verify a new method of electroneurogram (ENG) recording that enables the rate of neural firing within prescribed bands of propagation velocity to be determined in real time. Velocity selective recording (VSR) has been proposed as a solution to the problem of increasing the information available from an implantable neural interface (typically with electrodes in circumferential nerve cuffs) and has been successful in transforming compound action potentials into the velocity domain. NEW METHOD: The new method extends VSR to naturally-evoked (physiological) ENG in which the rate of neural firing at particular velocities is required in addition to a knowledge of the velocities present in the recording. RESULTS: The experiments, carried out in rats required individual spikes to be distinct and non-overlapping, which could be achieved by a microchannel or small-bore cuff. In these experiments, strands of rat nerve were laid on ten hook electrodes in oil to demonstrate the principle. COMPARISON WITH EXISTING METHOD: The new method generates a detailed overview of the firing rates of neurons based on their conduction velocity and direction of propagation. In addition it allows real time working in contrast to existing spike sorting methods using statistical pattern processing techniques. CONCLUSIONS: Results show that by isolating neural activity based purely on conduction velocity it was possible to determine the onset of direct cutaneous stimulation of the L5 dermatome

    New evidence on the management of Lewy body dementia

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordNote that the article title of the accepted author manuscript is different to that of the final published version.Dementia with Lewy bodies and Parkinson’s disease dementia, jointly known as Lewy body dementia (LBD), are common neurodegenerative conditions. Patients with LBD present with a wide range of cognitive, neuropsychiatric, sleep, motor, and autonomic symptoms. The expression of these varies between individual patients, and over time. Treatments may benefit one symptom, but at the expense of worsening another, making management difficult. Often symptoms are managed in isolation and by different specialists, which undermines high quality care. Clinical trials and meta-analyses now provide an improved evidence base for the treatment of cognitive, neuropsychiatric and motor symptoms in LBD, in addition to which expert consensus opinion supports the application of treatments from related conditions such as Parkinson’s disease (PD) for the management of, for example, autonomic symptoms. There remain however clear evidence gaps and there is a high need for future clinical trials focused on specific symptoms in LBD.National Institute for Health Research (NIHR

    Sustained attention in mild cognitive impairment with Lewy bodies and Alzheimer\u27s disease

    Get PDF
    \ua9 The Author(s), 2023. Published by Cambridge University Press on behalf of International Neuropsychological Society. Objective: Attentional impairments are common in dementia with Lewy bodies and its prodromal stage of mild cognitive impairment (MCI) with Lewy bodies (MCI-LB). People with MCI may be capable of compensating for subtle attentional deficits in most circumstances, and so these may present as occasional lapses of attention. We aimed to assess the utility of a continuous performance task (CPT), which requires sustained attention for several minutes, for measuring attentional performance in MCI-LB in comparison to Alzheimer\u27s disease (MCI-AD), and any performance deficits which emerged with sustained effort. Method: We included longitudinal data on a CPT sustained attention task for 89 participants with MCI-LB or MCI-AD and 31 healthy controls, estimating ex-Gaussian response time parameters, omission and commission errors. Performance trajectories were estimated both cross-sectionally (intra-task progress from start to end) and longitudinally (change in performance over years). Results: While response times in successful trials were broadly similar, with slight slowing associated with clinical parkinsonism, those with MCI-LB made considerably more errors. Omission errors were more common throughout the task in MCI-LB than MCI-AD (OR 2.3, 95% CI: 1.1-4.7), while commission errors became more common after several minutes of sustained attention. Within MCI-LB, omission errors were more common in those with clinical parkinsonism (OR 1.9, 95% CI: 1.3-2.9) or cognitive fluctuations (OR 4.3, 95% CI: 2.2-8.8). Conclusions: Sustained attention deficits in MCI-LB may emerge in the form of attentional lapses leading to omissions, and a breakdown in inhibitory control leading to commission errors

    Essential thalamic contribution to slow waves of natural sleep

    Get PDF
    Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings, microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the frequency of slow waves recorded during non-REM sleep in freely moving, naturally sleeping-waking rats. A smaller volume of thalamic inactivation than during sleep is required for observing similar effects on EEG slow waves recorded during anesthesia, a condition in which both bursts and single action potentials of thalamocortical neurons are almost exclusively dependent on T-type calcium channels. Thalamic inactivation more strongly reduces spindles than slow waves during both anesthesia and natural sleep. Moreover, selective excitation of thalamocortical neurons strongly entrains EEG slow waves in a narrow frequency band (0.75-1.5 Hz) only when thalamic T-type calcium channels are functionally active. These results demonstrate that the thalamus finely tunes the frequency of slow waves during non-REM sleep and anesthesia, and thus provide the first conclusive evidence that a dynamic interplay of the neocortical and thalamic oscillators of slow waves is required for the full expression of this key physiological EEG rhythm

    Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method

    Get PDF
    Non-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 μeV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K.This work was funded by the EPSRC (Grant Nos. EP/J003603/1 and EP/H047816/1).This is the final published version. It first appeared at http://scitation.aip.org/content/aip/journal/aplmater/2/12/10.1063/1.4904068
    • …
    corecore